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We study the equilibrium Gibbs states for a Boson gas model, defined by Bru
and Zagrebnov, which has two phase transitions of the Bose condensation type.
The two phase transitions correspond to two distinct mechanisms by which
these condensations can occur. The first (non-conventional) Bose condensation is
mediated by a zero-mode interaction term in the Hamiltonian. The second is a
transition due to saturation quite similar to the conventional Bose–Einstein (BE)
condensation in the ideal Bose gas. Due to repulsive interaction in non-zero
modes the model manifests a generalized type III; i.e., non-extensive BE con-
densation. Our main result is that, as in the ideal Bose gas, the conventional
condensation is accompanied by a loss of strong equivalence of the canonical
and grand canonical ensembles whereas the non-conventional one, due to the
interaction, does not break the equivalence of ensembles, at least not on the
level of the gauge invariant states. It is also interesting to note that the type of
(generalized) condensate, I, II, or III (in the terminology of van den Berg,
Lewis, and Pulé), has no effect on the equivalence of ensembles. These results
are proved by computing the generating functional of the cyclic representation
of the Canonical Commutation Relation (CCR) for the corresponding equilib-
rium Gibbs states.

KEY WORDS: Quantum equilibrium states; generating functional; Bose con-
densation; Canonical Commutation Relations (CCR); equivalence of ensembles.



1. INTRODUCTION AND SETUP OF THE PROBLEM

In recent years, the phenomenon of Bose condensation, described first by
Einstein in 1925, (1) has become an active area of research, both experimen-
tally and theoretically. An example is the existence of a new kind of con-
densation which was recently theoretically discovered by an analysis of the
thermodynamic behaviour of the Bogoliubov Weakly Imperfect Bose
Gas (2–7) or of some specific Bose systems with diagonal interactions. (8, 9)

This new Bose condensation, denoted as non-conventional Bose conden-
sation, is in fact induced by a mechanism of interaction whereas the con-
ventional one; i.e., the Bose–Einstein (BE) condensation, appears by a
phenomenon of saturation; i.e., by the existence only of a bounded critical
density. (10–18) In fact, the Bose condensation occurring in the Huang–Yang–
Luttinger model and in the, so-called, Full Diagonal Model, studied in
great detail in refs. 19–21, should also be considered as examples of the non-
conventional type, since in the both cases it is due to the interaction in those
models.
The analysis of the effect of the conventional BE condensation on the

equilibrium states was initially worked out by Araki and Woods in the case
of the Perfect Bose Gas (PBG), (22) and further refined in refs. 23–25. A well-
known model that exhibits non-conventional condensation is the Bogoliu-
bov model. (2–5, 7) As a complete and rigorous analysis of the Gibbs states of
the Bogoliubov model is beyond the reach of current techniques, we
propose to analyze the effect of the non-conventional Bose condensation on
the Gibbs states in the simpler model defined in ref. 8, see (1.1), in which
the both kinds of Bose condensation occur.
The model we consider is a system of spinless bosons of mass m

enclosed in a cubic box L … Rd of volume V=|L|=Ld centered at the
origin with a Hamiltonian of the form

HIL=TL+U
0
L+U

I
L=H

0
L+U

I
L, (1.1)

with

TL= C
k ¥ Lg

0{0}

eka
g
kak, ek=(

2k2/2m, for all k ] 0,

U0L=e0a
g
0a0+

g0
2V
ag0a

g
0a0a0, e0 < 0, g0 > 0,

UIL=
1
2V

C
k ¥ Lg

0{0}

gka
g
ka

g
kakak, g+ \ gk \ g− > 0.

(1.2)
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The sums run over the set

Lg=3k ¥ Rd : ka=
2pna
L
, na=0, ±1, ±2,..., a=1, 2,..., d4 ,

i.e., we consider periodic boundary conditions on “L. We denote the corre-
sponding one-particle Hilbert space by L2(L). Here a#k={ak or a

g
k} are the

usual boson creation and annihilation operators for the one-particle state
kk(x)=V−

1
2e ikx, k ¥ Lg, x ¥ L, acting on the boson Fock space FB

L —

FB(L2(L)) over L2(L):

FB
L —Â

+.

n=0
H (n)
B , (1.3)

where

H (n)
B — (L2(Ln))symm (1.4)

is the symmetrized n-particle Hilbert spaces appropriate for bosons, and
H (0)
B =C. We denote by

A (n) — A KH (n)
B

the restriction of an operator A acting on the boson Fock space FB
L to

H (n)
B .
This Bose model was introduced and studied in ref. 8. Clearly, it can

be considered as a perturbation of the kinetic-energy TL with diagonal
interactions in modes k=0 (U0L) and k ] 0 (U

I
L).

The main interest of this model is that it exhibits two phase transitions
accompanied by the formation of non-conventional and conventional Bose
condensation. The first is due to the negative effective excitation energy
e0 < 0, which leads to a macroscopic occupation of the zero-mode in some
interval of negative chemical potentials. This condensation occurs at any
temperature. The second is a conventional condensation due to saturation.
Notice that the second repulsive term (g0 > 0) in U

0
L prevents the Bose gas

from collapse; i.e., it keeps the particle density finite for negative chemical
potentials.
We now summarize the main results of ref. 8, where it was shown in

detail that the model HIL (1.1) displays a two-stage Bose condensation. Let
m and h=b−1 denote the chemical potential and temperature, respectively.
Furthermore

NL= C
k ¥ Lg
Nk — C

k ¥ Lg
agkak
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is the particle-number operator and O−PHIL (b, m) represents the grand-
canonical Gibbs state for the HamiltonianHIL. Define

rP(b, m)=
1
(2p)d

F
R
d
(eb(ek −m)−1)−1 dk (1.5)

and

rPc (b) — sup
m < 0
rP(b, m)=

1
(2p)d

F
R
d
(ebek−1)−1 dk <+., d > 2. (1.6)

rP and rPc are the density and the critical density of the PBG, respectively.
The following results are proved in ref. 8:

• The model has well-behaved thermodynamics; i.e., the pressure
exists, for the temperature h=b−1 \ 0, and chemical potential m [ 0. We
denote this domain by Q={(h, m) : h \ 0, m [ 0}. Notice that the same is
valid for any finite e0 ¥ R1.

• There is no condensation for m [ e0, but condensation occurs for
e0 < m [ 0. More precisely, one has a macroscopic occupation of the k=0
mode, given by

rI0(b, m) — lim
L

7N0
V
8
HIL

(b, m)=max 30, m− e0
g0
4 , (1.7)

i.e., there is Bose condensation due to the instability implied by the nega-
tive excitation energy e0 < 0, thought of as being induced by an interaction
mechanism (non-conventional condensation). Note that the density of the
condensate depends linearly on m− e and not on b.

• For d > 2, the non-conventional Bose condensate density rI0(b, m)
(1.7) and the total particle density

rI(b, m) — lim
L

7NL
V
8
HIL

(b, m)=rP(b, m)+rI0(b, m) (1.8)

attain their maxima at m=0. For densities exceeding a critical value,

r > rIc(b) — sup
m [ 0
rI(b, m)= lim

mQ 0 −
rI(b, m)=rPc (b)−

e0

g0
<+., (1.9)
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the HIL model (1.1) manifests a generalized type III (i.e., non-extensive)
conventional BE condensation:

r̃I0(b, r) — lim
dQ 0+

lim
L

1
V

C
{k ¥ Lg : 0 < ||k|| < d}

ONkPHIL

=˛0 for r [ rIc(b)
r−rIc(b) for r > rIc(b).

(1.10)

The term non-extensive refers to the fact that no single mode has a macro-
scopic occupation of particles. For e0 < 0 this conventional condensate
coexists at m=0 with the non-conventional condensate rI0(b, m=0) in the
mode k=0. Notice that the conventional BE condensation (1.10) appears
in spite of the repulsive interaction UIL (1.2) between bosons in modes
k ] 0. But it is because of this repulsion that the condensation is non-
extensive.

• Remark that formula (1.7) is also valid for e0 \ 0. In this case one
gets rI0(b, m) — 0; i.e., the model (1.1) manifests, for d > 2, only the non-
extensive conventional condensation (1.10).

More details about the non-extensive BE condensation one finds in
Appendix A of the present paper. These results are an extension of those of
ref. 8. They are indispensable for calculating the generating functional for
the model (1.1).
We conclude this introduction with a few remarks. The first concerns

the effect of the repulsive term UIL in (1.2). It is known that for g− > 0, this
interaction converts the conventional condensation from type I (macrosco-
pic occupation of bounded number of modes k ] 0), e.g., a single mode
k=0 such as occurs in the PBG, e0=g0=g+=0), into one of type III (no
macroscopic occupation of a single mode, accumulation of a finite fraction
of the particles in an infinitesimal interval near k=0). (6, 8, 18) The simplest
example corresponds to the PBG (e0=g0=g+=0)in an isotropically
dilated container, when the macroscopic occupation of the single mode
k=0 is transformed by the pure repulsive interaction, g0 > 0, g− > 0,
e0=0, into a non-extensive BE condensation. (6) We stress here the isotropic
shape of the container, since the conventional condensation is so subtle
matter that the PBG itself manifests non-extensive BE condensation, if for
example, considered in a dilated rectangular box with highly anisotropic
growth rates for the edges. (6, 12, 14, 15)

Our second remark concerns the dimension dependence of the phase
transitions. In contrast to the conventional condensation caused by satura-
tion for d > 2, the non-conventional condensation (1.7) is due to interaction,
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and it exists for all dimensions, including d=1, and 2. This is another
indication that the simplified model (1.1) with diagonal interaction is
similar to the Bogoliubov Gas. (5–7) Moreover, in contrast to conventional
BE condensations, the non-conventional condensation may emerge as a
first-order phase transitions: the Bose condensate density appears discon-
tinuously, see for example the thermodynamic behaviour of the Bogoliubov
gas, (2–4, 7) or the Huang–Yang–Luttinger model, see refs. 19 and 20 and
ref. 26. This transition in the simplified model studied here is continuous
however, see (1.7).
The bulk of the present paper is devoted to the study of the Gibbs

states of the model (1.1). In particular we shall calculate the generating
functional of the cyclic representation of the Canonical Commutation
Relations (CCR) for the Gibbs states of the model (1.1), a method intro-
duced in 1963 by Araki and Woods. (22) From the generating functional it is
then straightforward to read off properties such as the breakdown of the
strong equivalence of ensembles as was done in refs. 23–25 and 27. We
shall see that the two phase transitions have their distinct effects on the
generating functional.
Before we embark on the actual calculation we present, in Section 2,

the relevant known properties of the generating functional of the cyclic
representation of the CCR for the Gibbs states of the PBG. (27) In Section 3
we calculate in the thermodynamic limit the grand-canonical generating
functional for the Gibbs state O−PHIL (b, m) associated with the model (1.1)
for a fixed chemical potential m < 0, or a fixed density r < rIc(b). In the
next Section 4 we determine the generating functional for a fixed particle
density r \ rIc(b) (1.9). In Section 5 we summarize our conclusions and
formulate some tentative generalizations. Some technical results are
collected in the Appendix A.

2. GENERATING FUNCTIONALS

The purpose of this section is to review the characterization of (Gibbs)
states of a Bose system by their generating functional, a method originally
introduced by Araki and Woods in the case of the PBG. (22) For each Gibbs
state there is a representation of the Canonical Commutation Relations
(CCR) given by the GNS construction. For a complete description see
ref. 27, and also refs. 23–25 for a detailed analysis of the PBG Gibbs state.
Here, we only present a quick overview.
Let M be a complex pre-Hilbert space with the corresponding scalar

product (., .)M. We consider a representation of the CCR over M given by
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a map hWW(h) from M to a space U(H) of unitary operators on a
Hilbert spaceH satisfying

W(h1) W(h2)=exp 3 −
i
2
Im(h1, h2)M 4W(h1+h2), (2.1)

and such that the map lWW(lh) from R to U(H) is strongly continuous.
By Stone’s theorem, (27) the continuity implies the existence of self-adjoint
operators R(h) such that

W(h)=exp{iR(h)}. (2.2)

The R(h) are called the field operators and can be interpreted as the
random variables of a non-commutative probability theory, since by (2.1)
one gets

[R(h1), R(h2)]=i Im(h1, h2)M. (2.3)

Note that the map hW R(h) is a linear over R. For h ¥M, we can now
define the creation and annihilation operators ag(h) and a(h) — (ag(h))g by

ag(h) —
1

`2
{R(h)−iR(ih)}, a(h) —

1

`2
{R(h)+iR(ih)}. (2.4)

A representation of the CCR is called cyclic if there is a vector W inH
such that the set {W(h) W}h ¥M is dense in H. Such W is called a cyclic
vector. It can be shown that, for every regular Gibbs state O ·P, there is
unique (up to unitary equivalence) representation of the CCR with cyclic
vector W such that

Oexp{iR(h)}P=(W, W(h) W)H.

The generating functional of the representation is defined by

E(h) — (W, W(h) W)H, h ¥M. (2.5)

The generating functional plays the same rôle for a state on the CCR
algebra, as the characteristic function for probability distribution, see
ref. 27.

Theorem 2.1 (Araki–Segal). Let E be the generating functional of
a cyclic representation of the CCR overM. Then it satisfies:

(i) E(0)=1;
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(ii) for any finite set {cj ¥ C; hj ¥M}, one has

C
n

l, s=1
E(hl−hs) exp 3

i
2
Im(hl, hs)M 4 clcs \ 0;

(iii) for h ¥M, the map lQ E(lh) from C to R is continuous.

Conversely, any generating functional E: MQ C satisfying (i), (ii), and (iii)
is a generating functional of a cyclic representation of the CCR.

Our concrete setup will be as follows. For a (sufficiently regular) finite
volume, L … Rd, the grand canonical Gibbs state O ·PL (b, m), is defined
on the set of bounded operators acting on the boson Fock space
FB
L —FB(L2(L)) over L2(L), see (1.3). In order to analyze the state

O ·PL (b, m), we use the Fock representationWF
B
L of the CCR over the pre-

Hilbert space M=DL (the space of the C
.

0 (L)-functions with compact
supports contained in L). Its generating functional (2.5) is equal to
EF

B
L
(h)=e−

1
4 ||h||

2
, where cyclic vector W is vacuum in H=FB

L: a(h) W=0
for any h ¥DL. Since DL is dense in L2(L), one can extend WF

B
L to the

later. We shall calculate the generating functional

EL(b, m; h) — OWF
B
L(h)PL (b, m), h ¥DL, (2.6)

and study its thermodynamic limit (L ‘ Rd).

3. GIBBS STATE AND NON-CONVENTIONAL CONDENSATION

Recall from Section 1 that condensation in the exactly solvable model
HIL (1.1) occurs in two stages: for intermediate densities r < r

I
c(b); i.e., for

negative chemical potentials e0 < m < 0, one has only non-conventional Bose
condensation in the k=0 mode due to the diagonal perturbation U0L (1.2)
of the PBG (cf. (1.7)), whereas for large densities r \ rIc(b) (m=0), this
condensate coexists with conventional (type III) generalized BE condensa-
tion corresponding to the standard mechanism of saturation, see (1.9) and
(1.10).
In this section we study the influence on the corresponding Gibbs state

of the first stage of condensation: the non-conventional one (1.7) which
appears for a fixed chemical potential e0 < m [ 0. Following refs. 22–25,
we use the Fock representations of the CCR (27) over the space DL of
C.-smooth functions with compact support contained in L (Section 2) and
we define by

EIL(b, m; h) — OWF
B
L(h)PHIL (b, m), h ¥DL, (3.1)
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the grand-canonical generating functional of the model (1.1):

HIL= C
k ¥ Lg

3ekagkak+
gk
2V
ag

2

k a
2
k
4= C

k ¥ Lg
HIk,

ek ] 0=(2k2/2m \ 0, e0 < 0. (3.2)

Here the operatorsWF
B
L(h) for h ¥DL, are defined by (2.2)–(2.4).

Note that the boson Fock space FB
L (1.3) is isomorphic to the tensor

product: FB
L %êk ¥ Lg FB

k , where F
B
k —FB(Hk) is the boson Fock space

constructed on the one-dimensional Hilbert space

Hk={le ikx}l ¥ C. (3.3)

Then using the Fourier decomposition

ag(h)=F
L

dxh(x) ag(x)=
1

`V
C
k ¥ Lg
(e ikx, h)L2(L) ag(kk) —

1

`V
C
k ¥ Lg
hka

g
k ,

a(h)=F
L

dxh(x) a(x)=
1

`V
C
k ¥ Lg
(h, e ikx)L2(L) a(kk) —

1

`V
C
k ¥ Lg
hkak,

(3.4)

we can write the generating functional EIL(b, m; h) (3.1) in the following
form:

EIL(b, m; h)=D
k ¥ Lg

Oe
i

`2V
(hkak+hkagk )PHIL (b, m)

=D
k ¥ Lg

TrFBk (e
−bHIk(m)e

i

`2V
(hkak+hkagk ))

TrFBk (e
−bHIk(m))

=Oe
i

`2V
(h0a0+h0a

g
0 )PHI0 D

k ¥ Lg
0{0}

Oe
i

`2V
(hkak+hkagk )PHIk . (3.5)

Next, we study the two factors corresponding to cases k=0 and k ] 0
separately. Denote by D=1L … R

d DL the space of C.-smooth functions on
Rd having compact support, and by ĥk — (e ikx, h)L2(Rd), k ¥ Rd.

Theorem 3.1. Let e0 ¥ R1 and g0 > 0. Suppose that 0 [ g− [ gk [ g+
for k ¥ Lg0{0}. Then for m < 0 and any h in the space D one gets that:

(i) for the mode k=0

lim
L

Oe
i

`2V
(h0a0+h0ag0 )PHI0=J0(`2r

I
0(b, m) |ĥ0 |), (3.6)

Equilibrium States for Model with Two Kinds of Bose Condensation 151



where the non-conventional Bose-condensate density rI0(b, m) is defined by
(1.7);

(ii) for the second factor in (3.5) we have

lim
L

D
k ¥ Lg

0{0}

Oe
i

`2V
(hkak+hkagk )PHIk=exp{−

1
4 ||h||

2− 12 Ab, m(h, h)}, (3.7)

where the sesquilinear form Ab, m(u, v), for u, v ¥D, is defined by

Ab, m(u, v)=
1
(2p)d

F
R
d

ûk v̂k
eb(ek −m)−1

dk. (3.8)

Proof. (i) Let {kn}n \ 0 …FB
0 be an orthonormal base of eigenvec-

tors of the operator ag0a0:

ag0a0kn=nkn.

Then one gets

X — TrFB0 (e
−b(HI0 −mN0)e

i

`2V
(h0a0+h0ag0 ))

=C
+.

n=0
e−b[(e0 −m−

g0
2V) n+

g0
2V n

2](kn, e
i

`2V
(h0a0+h0ag0 )kn)FBL . (3.9)

By the Baker–Campbell–Hausdorff formula:

eA+B=eAeBe−
1
2 [A, B], if [A, [A, B]]=[B, [A, B]]=0, (3.10)

we obtain that

exp 3 i
`2V

(h0a0+h0a
g
0 )4=e− 14V |h0|

2
exp 3 i

`2V
h0a

g
0
4 exp 3 i

`2V
h0a0 4 .
(3.11)

Therefore, since

a0kn=`n kn−1,

ag0kn=`n+1 kn+1,

(kn, knŒ)FBL=dn, nŒ,
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by (3.11) the trace (3.9) equals:

X=e−
1
4V |h0|

2
C
+.

n=0
e−b[(e0 −m−

g0
2V) n+

g0
2V n

2] ||e
i

`2V
h0a0kn ||2

=e−
1
4V |h0|

2
C
+.

n=0
e−b[(e0 −m−

g0
2V) n+

g0
2V n

2] C
n

l=0

1 −|h0 |
2

2V
2 l n!
(l!)2(n−l)!

. (3.12)

Using the Laguerre polynomials

Ln(z) — C
n

l=0

n!
(l!)2(n−l)!

(−z) l, n \ 0,

(3.12) can be rewritten to give

X=e−
1
4V |h0|

2
C
+.

n=0
Ln 1
|h0 |2

2V
2 e−b[(e0 −m− g02V) n+g02V n2].

Consequently, we obtain

Oe
i

`2V
(h0a0+h0ag0 )PHI0=e

− 14V |h0|
2
C
+.

n=0
Ln 1
|h0 |2

2n
n
V
2 e−bV [(e0 −m− g02V) nV+g02 ( nV)2]

C
+.

n=0
e−bV [(e0 −m−

g0
2V)

n
V+

g0
2 (
n
V)
2]

. (3.13)

Notice that the probability distributions in (3.13):

FV(x) —
; 0 [ n/V [ x e−bV [(e0 −m−

g0
2V)

n
V+

g0
2 (
n
V)
2]

;+.
n=0 e

−bV [(e0 −m−
g0
2V)

n
V+

g0
2 (
n
V)
2]

(3.14)

satisfy the Laplace large deviation principle: (28, 29)

lim
L

F
R
1
f(x) dFV(x)=f 1max 30,

m− e0
g0
42 , (3.15)

for any bounded continuous function f on R1.
The Laguerre polynomials have the property

lim
nQ+.

Ln(z/n)=J0(2`z)=C
.

l=0

1
(l!)2

(−z) l, for z ¥ C, (3.16)
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as entire analytic functions in C. Here J0(x) is the Bessel function of order
0. Using this and (3.15), we find the thermodynamic limit of (3.13) to be

lim
L

Oe
i

`2V
(h0a0+h0ag0 )PHI0=J0(`2r

I
0(b, m) |ĥ0 |

2),

for any h ¥D, since h0=ĥ0 for L sufficiently large. Thus, by definition
(1.7), we deduce (3.6).
(ii) Similar to the proof of (3.13) we get for k ¥ Lg0{0} that

Ck — Oe
i

`2V
(hkak+hkagk )PHIk=e

− 14V |hk|
2
C
+.

n=0
Ln 1
|hk |2

2V
2 e−bV [(ek −m− gk2V) nV+gk2 ( nV)2]

C
+.

n=0
e−bV [(ek −m−

gk
2V)

n
V+

gk
2 (
n
V)
2]

. (3.17)

Let

ck — e−
1
4V |hk|

2
C
+.

n=0
Ln 1
|hk |2

2V
2 e−b[(ek −m− gk2V) n]

C
+.

n=0
e−b[(ek −m−

gk
2V) n]

. (3.18)

Since

C
+.

n=0
Ln(z) sn=

1
1−s

exp 3 −z s
1−s
4 , (3.19)

we readily get that

lim
L

D
k ¥ Lg

0{0}

ck=exp{−
1
4 ||h||

2− 12 Ab, m(h, h)}, (3.20)

see (3.7).
To show that one gets the same limit for limL <k ¥ Lg

0{0} Ck we define

Ck(tk) — e−
1
4V |hk|

2
C
+.

n=0
Ln 1
|hk |2

2V
2 e−bV [(ek −m− gk2V) nV+tk2 ( nV)2]

C
+.

n=0
e−bV [(ek −m−

gk
2V)

n
V+

tk
2 (
n
V)
2]

. (3.21)

Therefore, Ck(tk=0)=ck and Ck(tk=gk)=Ck. Since Ck(tk) ¥ C.(R1+) for
each k ¥ Lg0{0}, then to prove that limL <k ¥ Lg

0{0} Ck coincides with (3.20)
it is sufficient to estimate the asymptotic behaviour of derivative

“tkCk(tk=0)=
Dk(V)

{;+.n=0 e−b[(ek −m−
gk
2V) n]}2

e−
1
4V |hk|

2
, (3.22)
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for VQ.. Here

Dk(V)=C
+.

n=0

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n] 1 −bn

2

2V
26 C

+.

n=0
e−b[(ek −m−

gk
2V) n]

+C
+.

n=0

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n]6 C

+.

n=0

5e−b[(ek −m− gk2V) n] 1bn
2

2V
26.
(3.23)

Since (3.16) implies the convergence of derivatives, one gets the estimate

:1
n
L −n 1

z
m
2 : [ Cz0 , z ¥ [0, z0], (3.24)

for any z0 > 0 and n [ m. Therefore, in this domain we have:

:Ln 1
z
m
2−1 : [ Cz0n

z
m
. (3.25)

Let n0(V) — [V1−d] for some d ¥ (0, 1). Here [x] denotes the integer part
of the real x. Then, since gk [ g+, by virtue of (3.25) we can find Ck > 0
such that for any m < 0 one gets the estimates:

: C
n0(V)

n=0

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n] 1 −bn

2

2V
26 C

+.

n=0
e−b[(ek −m−

gk
2V) n] :

[ Ck
b |hk |2

4V2
[“3yf(y=b(ek−m))] f(b(ek−m)), (3.26)

and

: C
n0(V)

n=0

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n]6 C

+.

n=0

5e−b[(ek −m− gk2V) n] 1bn
2

2V
26 :

[ Ck
b |hk |2

4V2
[“yf(y=b(ek−m))][“

2
yf(y=b(ek−m))], (3.27)

where f(b(ek−m))=(1−e−b(ek −m))−1.
On the other hand, for large n the Laguerre polynomials have the

following asymptotics:

Ln(x)=
ex/2

(p2nx)1/4
cos[2`nx−p/4]+O(n−3/4), (3.28)
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for x > 0,

Ln(x)=ex/2J0(2`(n+1/2) x)+O(n−3/4), (3.29)

for a [ x [ b, a > 0, and

Ln(x)=1−nx+O((nx)2), (3.30)

for nxQ 0. Therefore, we get, for some D1(k), D2(k) > 0, the estimates:

: C
+.

n > n0(V)

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n] 1bn

2

2V
26 C

+.

n=0
e−b[(ek −m−

gk
2V) n] :

[ D1(k)
b(n0(V))7/4

V3/4
e−b(ek −m) n0(V)f(b(ek−m)), (3.31)

and

: C
+.

n > n0(V)

53Ln 1
|hk |2

2V
2−14 e−b[(ek −m− gk2V) n]6 C

+.

n=0
[e−b[(ek −m−

gk
2V) n] 1bn

2

2V
26 :

[ D2(k)
b

V3/4
e−b(ek −m) n0(V) “2yf(y=b(ek−m)). (3.32)

Since m < 0, then for large V the estimates (3.31) and (3.32) are of the order
O(e−b(ek −m) V

(1−d)
) for some 0 < d < 1. Taking into account (3.26) and (3.27)

one concludes that Dk(V), and consequently (Ck− ck), have for large V the
order O(e−bekV−2). This implies that for any h ¥D

lim
L

D
k ¥ Lg

0{0}

Ck=lim
L

D
k ¥ Lg

0{0}

ck(1+O(e−bekV−2))=lim
L

D
k ¥ Lg

0{0}

ck, (3.33)

which, by (3.20), proves the assertion (3.7). L

Remark 3.2. The conditions 0 [ g− [ gk [ g+ for k ¥ Lg0{0} can
be relaxed. If 0 [ gk=gk(V) [ ckVak for k ¥ Lg0{0}, with ak [ a+ < 1 and
0 [ ck [ c+, then (3.7) still holds. The proof is obtained by following the
same line of reasoning as in the proof of Theorem 3.1.

Remark 3.3. The first result of the Theorem 3.1; i.e. (3.6), is similar
to the result for the PBG at densities r \ rPc (b) (1.6) in the canonical
ensemble (b, r) (see refs. 22 and 23):
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lim
L

Oe
i

`2V
(h0a0+h0ag0 )PTL (b, r) — lim

L

TrH(n)
B
({e

i

`2V
(h0a0+h0ag0 )e−bTL} (n))

TrH(n)
B
({e−bTL} (n))

=J0(`2r
P
0 (b, r) |ĥ0 |),

where n=[Vr] is the integer part of Vr andH (n)
B is defined by (1.4). Here

rP0 (b, r)=r−r
P
c (b)=lim

L

7ag0a0
V
8
TL

(b, r) — lim
L

1
V
TrH(n)

B
({ag0a0e

−bTL} (n))
TrH(n)

B
({e−bTL} (n))

is the canonical density of conventional BE condensate in the PBG. It
should be stressed, however, that the limit (3.6) is computed in the grand-
canonical ensemble (b, m) for the non-PBG (1.1).

Corollary 3.4. Let 0 [ gk=gk(V) [ ckVak for k ¥ Lg0{0}, with
ak [ a+ < 1 and 0 [ ck [ c+. Then for e0 ¥ R1, m < 0, and h ¥D, one has

EI(b, m; h) — lim
L

EIL(b, m; h)

=J0(`2r
I
0(b, m) |ĥ0 |) exp{−

1
4 ||h||

2− 12 Ab, m(h, h)}, (3.34)

where rI0(b, m) and Ab, m(h1, h2) are respectively the non-conventional Bose
condensate density (1.7) and the positive closable sesquilinear form (3.8)
with domain D.

Proof. See Theorem 3.1 and Remark 3.2. L

The last result is obtained for any fixed chemical potential m < 0. It
can be shown (8) that for finite volume and any density r \ 0 there is a one-
to-one correspondence between r and chemical potential mIL(b, r), which is
solution of the equation

rIL(b, m) — 7
NL
V
8
HIL

(b, m)=r. (3.35)

From Corollary 3.4 we have an explicit calculation of the grand-canonical
generating functional EIL(b, m; h) in the thermodynamic limit. However, for
a fixed total particle density r \ 0 one has to evaluate the following ther-
modynamic limit

ẼI(b, r; h) — lim
L

EIL(b, m
I
L(b, r); h), h ¥D. (3.36)
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This is not guaranteed to equal the limit (3.34) with chemical potential
mI(b, r) — limL m

I
L(b, r), since the map rQ m

I(b, r) fails to be injective:

mI(b, r)=lim
L
mIL(b, r)=˛

< 0 for r < rIc(b)
=0 for r \ rIc(b),

(3.37)

because of conventional BE condensation for dimensions d > 2. In this case
the total particle density rI(b, m) (1.8) is saturated for m=0: (8) there is a
finite critical density of particles rIc(h) , cf. (1.6), (1.9). The question of
equality of the limits (3.34) and (3.36) will be considered in the following
paragraphs.
In fact it is linked to another question, which concerns the relation

between thermodynamic limit of the canonical generating functional
defined for the total particle density r \ 0 by

EIL, can(b, r; h) —
TrH(n)

B
({WF

B
L(h) e−bH

I
L} (n))

TrH(n)
B
({e−bH

I
L} (n))

, h ¥DL, n=[Vr], (3.38)

and the grand-canonical generating functional ẼI(b, r; h) defined by (3.36).
In other words, in the thermodynamic limit, for the same particle density r,
the canonical ensemble may not yield the same equilibrium state as the
grand-canonical ensemble; i.e., one may have

EIcan(b, r; h) — lim
L

EIL, can(b, r; h) ] ẼI(b, r; h), h ¥D.

To answer these questions we notice that

EIL(b, m
I
L(b)(b, r); h)=

;+.n=0 e−bV[−m
I
L(r)(

n
V)+f

I
L(b,

n
V)]EIL, can(b,

n
V ; h)

;+.
n=0 e

−bV[−mIL(r)(
n
V)+f

I
L(b,

n
V)]

, (3.39)

where fIL(b, r) is the free-energy density associated with the Hamiltonian
HIL (1.1):

fIL(b, r) — −
1
bV
ln TrH(n)

B
({e−bH

I
L} (n)), r \ 0, n=[Vr]. (3.40)

It is known from ref. 8 that:

(a) {fIL(b, r)}L … R
d is a family of strictly convex functions of r \ 0,

and this is also valid for

fI(b, r) — lim
L
fIL(b, r), (3.41)
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the free-energy density fIL(b, r) (3.40) in the thermodynamic limit, but in
the smaller domain: r < rIc(b);

(b) the convergence (3.41) implies in this domain (Griffiths lemma,
see, e.g., ref. 9) the limit:

“rfI(b, r)=lim
L
“rf

I
L(b, r) — m

I
can(b, r) < 0, (3.42)

which coincides with (3.37):

mIcan(b, r)=m
I(b, r), (3.43)

for r < rIc(b), where this function is one-to-one;

(c) the grand-canonical pressure, pI(b, m) — limL p
I
L(b, m), is the

Legendre transform:

pI(b, m)=sup
r \ 0
{mr−fI(b, r)}={mr−fI(b, r)}|r=rI(b, m), (3.44)

and

fI(b, r)=sup
m [ 0
{mr−pI(b, m)}={mr−pI(b, m)}|m=mI(b, r), (3.45)

where rI(b, m < 0) < rIc(b) is the function inverse to the injection (3.43):

rI(b, mI(b, r))=r;

(d) for r \ rIc(b), see (1.10) and (3.37), the limit (3.41) is equal to

fI(b, r)=sup
m [ 0
{mr−pI(b, m)}=−pI(b, m=0), (3.46)

i.e., the free-energy density is not a strictly convex function in this domain;
respectively, pI(b, m=0)=supr \ 0 {−fI(b, r)}=−fI(b, r \ r

I
c(b)), which

means that the pressure and the free-energy density are always related by the
Legendre transform: weak equivalence of ensembles.
By virtue of (a)–(c) we can now apply the Laplace large deviation

principle (28, 29) to calculate the limit of (3.39) in domain r < rIc(b):

ẼI(b, r; h)=EI(b, mI(b, r); h)=EIcan(b, r; h). (3.47)

Notice that for d=1, 2 one has rIc=+., see (1.9). Therefore,
Corollary 3.4 together with (3.47) imply the following result.
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Theorem 3.5. Let r < rIc(b). Then

ẼI(b, r < rIc(b); h)=J0(`2r
I
0(b, m

I(b, r)) |ĥ0 |)

× exp{− 14 ||h||
2− 12 Ab, mI(b, r)(h, h)}, (3.48)

for d \ 1, e0 ¥ R1, 0 [ gk [ ckVak for k ¥ Lg0{0}, with ak [ a+ < 1 and
0 [ ck [ c+ and h ¥D. Here Ab, m(h1, h2) and mI(b, r < r

I
c(b)) < 0 are

defined respectively by (3.8) and (3.37).

Consequently, the equality (3.47) shows the strong equivalence between
the canonical ensemble (b, r) and the grand-canonical ensemble (b, m), for
the gauge invariant states, when r < rIc(b) (i.e., m < 0): in the H

I
L model

(1.1) for a fixed total particle density r < rIc(b) the Gibbs state in the grand-
canonical ensemble coincides with the one in the canonical ensemble.
However, contrary to the non-conventional Bose condensation (1.7) the

conventional BE condensation r̃I0(b, r) > 0 (1.10) violates this strong
equivalence. Indeed, by virtue of (d), see (3.46), the limiting measure (3.39)
relating two generating functionals is not degenerate in domain r \ rIc(b).
Therefore, similar to the PBG, (22–25) the existence of the critical density
rIc(b) implies that for r > r

I
c(b) one has

ẼI(b, r; h) ] EIcan(b, r; h). (3.49)

In the next Section 4 we show that, in contrast to (3.47), for r > rIc(b) one
also gets

ẼI(b, r; h) ] EI(b, 0; h). (3.50)

4. GIBBS STATES AND CONVENTIONAL CONDENSATION OF TYPE III

Since rIc(b) <+. (1.9) only for d > 2, we consider L … Rd > 2. In the
interest of simplicity we restrict ourselves to a cubic box of the volume
V=|L|=Ld, and we put gk=g \ 0, k ¥ Lg. Notice that our reasoning
in the proofs of Theorems 3.1 and 3.5 used that m < 0, and that
mIL(b, r < r

I
c(b)) < 0, for large V. For r \ r

I
c(b) this is not the case, see

Appendix A. This difference modifies essentially the calculations of the
thermodynamic limit of the generating functional.

1. Our first step is to refine, for VQ+., the asymptotics of the
chemical potential mIL(b, r), which is solution of Eq. (3.35):

rIL(b, m
I
L(b, r))=

1
V

C
k ¥ Lg

0{0}

ONkPHIL (b, m
I
L(b, r))+7

N0
V
8
HIL

(b, mIL(b, r))

=r.
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For a strictly positive g > 0 this is done in Appendix A, see Theorem A.7:

mIL(b, r)=1
r−rIc(b)
CV
22/(d+2)+O 1 1

V
2 , (4.1)

where the constant C=(2m/(2)d/2/[g 2d−2pd/2d(d+2) C(d/2)] > 0, and
C(z) is the Euler gamma function. Hence, the chemical potential
mIL(b, r \ r

I
c(b)), is non-negative for large V. By virtue of (3.13) and (3.17)

this observation motivates to represent the generating functional (3.5) in
the form:

EIL(b, m
I
L(b, r); h)=Oe

i

`2V
(h0a0+h0ag0 )PHI0 (b, m

I
L(b, r))

× D
k ¥ D(L)+

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r))

× D
k ¥ D(L)−

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r)), (4.2)

with

D (L)− — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
2V
< 04 ,

D (L)+ — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
2V

\ 04 .
(4.3)

Remark 4.1. It is shown in Appendix A, that for r > rIc(b) and
gk \ g > 0 the non-extensive condensation r̃

I
0(b, r) (1.10) is concentrated

on the set D (L)− :

r̃I0(b, r)=lim
L

1
V

C
k ¥ D(L)−

ONkPHIL (b, m
I
L(b, r))=r−r

I
c(b) > 0, (4.4)

see Lemma 1.6 in Appendix A.

2. Since in the proof of Theorem 3.1(i) the sign of m is irrelevant, the
same line of reasoning gives that for m=mIL(b, r \ r

I
c(b)), (4.1), and for

any h ¥D , e0 ¥ R1:

lim
L

Oe
i

`2V
(h0a0+h0ag0 )PHI0 (b, m

I
L(b, r))=J0(`2r

I
0(b, 0) |ĥ0 |). (4.5)

Here the non-conventional Bose-condensate density rI0(h, 0) is defined for
m=0 by (1.7).
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3. Now, using the asymptotics (4.1) we can evaluate the thermody-
namic limit of

D
k ¥ D(L)+

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r)), (4.6)

see (4.2). Indeed, by inspection of the line of reasoning (3.17)–(3.32) we
find that it is only the inequality ek−m

I
L(b, r)−

gk
2V > 0 which one needs that

the limit (3.33) be valid. Therefore, taking into account (4.1) we get

lim
L

D
k ¥ D(L)+

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r))=exp{−

1
4 ||h||

2− 12 Ab, 0(h, h)},

(4.7)

for h ¥D and r \ rIc(h), with the sesquilinear form Ab, m=0(h1, h2) defined
by (3.8).

4. Finally, using the asymptotics (4.1) we have to compute the ther-
modynamic limit of the last factor in (4.2):

lim
L

D
k ¥ D(L)−

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r)). (4.8)

Because of non-negative mIL(b, r), and of the non-extensive BE conden-
sation r̃I0(h, r) (4.4), that spreads over the modes k ¥D

(L)
− (Remark 4.1), this

calculation is a more subtle matter than the thermodynamic limit of (4.6). In
particular, the exact knowledge of the asymptotics (4.1) of mIL(b, r) becomes
essential to find the limit of (4.8).
By (3.17) we get:

Ck=Oe
i

`2V
(hkak+hkagk )PHIk=e

− 14V |hk|
2
C
+.

n=0
nL, k(b, r; n) Ln 1

|hk |2

2V
2 , (4.9)

where

nL, k(b, r; n) —
e−b[(ek −m

I
L (b, r)−

gk
2V) n+

gk
2V n

2]

;+.
n=0 e

−b[(ek −m
I
L(b, r)−

gk
2V) n+

gk
2V n

2]
(4.10)

is the family of probability measures {nL, k(b, r; n)}L … R
d, k ¥ Lg , cf. (3.14) and

(A17). Consequently

ln D
k ¥ D(L)−

Ck=1 −
1
4V
2 C
k ¥ D(L)−

|hk |2+ C
k ¥ D(L)−

ln C
+.

n=0
nL, k(b, r; n) Ln 1

|hk |2

2V
2 .
(4.11)
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Since m IL (b, r \ r
I
c(b))Q 0, the thermodynamic limit of the first term in

(4.11) is

lim
L

1 − 1
4V
2 C
k ¥ D(L)−

|hk |2=lim
dQ 0

1 −1
4
2 1
(2p)d

F
{k: ek [ d}

ddk |ĥk |2=0, (4.12)

for any h ¥D. By virtue of the asymptotics (4.1) and by definition of
domain D (L)− we get for the limit of the second term:

lim
L

C
k ¥ D(L)−

ln C
+.

n=0
nL, k(b, r; n) Ln 1

|hk |2

2V
2

=lim
L

C
s ¥SB

ln C
+.

n=0
nL, k(s)(V1−2cb, r; n/V1− c) Ln 1

|hk(s)/Vc/2 |2

2V
2 . (4.13)

Here c=2/(d+2), the set:

SB — 3 s={sa}da=1 ¥ Zd0{0} :
(
2

2m
(2p)2 C

d

a=1
(sa/V1/d− c/2)2 [ B4 , (4.14)

and we put k(s) — 2ps/V1/d− c/2. Since for d > 2 one has 1−2c > 0, the
family of the scaled probability measures:

{nL, k(s)(V1−2cb, r; n/V1− c)}L … R
d, s ¥SB

, (4.15)

see (4.10), verifies the Laplace large deviation principle (28, 29) with the
support at the point limL n̄(V)/V1− c=(B− ek(s))/g , cf. Theorem A.7.
This remark, together with the asymptotics (3.30) of the Laguerre poly-
nomials and the continuity of h ¥D, gives:

lim
L

C
s ¥SB

ln C
+.

n=0
nL, k(s)(V1−2cb, r; n/V1−c) Ln 1

|hk(s)/Vc/2 |2

2V
2

=lim
L

C
s ¥SB

ln Ln̄(V)=V1−c(B− ek(s))/g 1
|hk(s)/Vc/2 |2

2V
2

=− lim
L

C
s ¥SB

V1−c
(B− ek(s))
g

|hk(s)/Vc/2 |2

2V
=−|ĥ0 |2

1
(2p)d

F
{k: ek [ B}

ddk
B− ek
g

=−
1
2
|ĥ0 |2 (r−r

I
c (b)). (4.16)
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Here we used that c=1−dc/2 to obtain in the limit the integral, and
(A.25) to get the last equality. Taking (4.12) and (4.16) into account we
finally get for (4.8):

lim
L

D
k ¥ D(L)−

Oe
i

`2V
(hkak+hkagk )PHIk (b, m

I
L(b, r))=exp{−

1
2 |ĥ0 |

2 (r−rIc(b))}

=exp{− 12 |ĥ0 |
2 r̃I0(b, r)}, (4.17)

where r̃I0(b, r) is density of the type III BE condensation, see (1.10).
The results of 1–4 can be summed up as follows:

Theorem 4.2. Let r \ rIc(b). Then

ẼI(b, r; h) — lim
L

EIL(b, m
I
L(b, r); h)

=J0(`2r
I
0(b, 0) |ĥ0 |) exp{−

1
4 ||h||

2− 12 Ab, 0(h, h)}

× exp{− 12 |ĥ0 |
2 (r−rIc(b))}, (4.18)

for d > 2, e0 ¥ R1, gk=g> 0 and h ¥D. Here Ab, m(h1, h2) and
mIL(b, r \ r

I
c(b)) \ 0 are defined respectively by (3.8) and (4.1).

Corollary 4.3. Comparing (3.34) and (4.18) one gets that the pres-
ence of the conventional BE condensation r̃I0(b, r) > 0, see (1.10), (4.4),
implies:

ẼI(b, r; h)=EI(b, 0; h) exp{− 12 |ĥ0 |
2 r̃I0(b, r)}, (4.19)

cf. (3.50). This means that at the point m=limL m
I
L(b, r \ r

I
c(b))=0 the

grand-canonical equilibrium state is not unique. There is a family of states
enumerated by the BE condensate density r̃I0(b, r)=r−r

I
c(b).

This effect is well-known in the PBG: (23–25)

Proposition 4.4. For isotropic dilation of a rectangular container
L … Rd > 2 the grand-canonical generating functional

ẼP(b, r; h) — lim
L

TrFBL (<k ¥ Lg e
i

`2V
(hkak+hkagk )e−b(TL−m

P
L(b, r) NL))

TrFBL (e
−b(TL−m

P
L(b, r) NL))

=lim
L
exp{− 14 ||h||

2− 12 Ab, mPL(b, r)(h, h)}

× lim
L

Oe
i

`2V
(h0a0+h0ag0 )PTL (b, m

P
L(b, r))

=exp{− 14 ||h||
2− 12 Ab, mP(b, r)(h, h)} exp{−

1
2 |ĥ0 |

2 rP0 (b, r)}. (4.20)
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Here mPL(b, r) < 0 is solution of the equation

rPL(b, m) — 7
NL
V
8
TL

(b, m)=
1
V
TrFBL (NLe

−b(TL−mNL))
TrFBL (e

−b(TL−mNL))
=r.

Similar to (3.37) and (4.4), one has:

mP(b, r)=lim
L
mPL(b, r)=˛

< 0 for r < rPc (b)
=0 for r \ rPc (b),

and the type I conventional BE condensation in the single mode k=0:

r̃P0 (b, r)=lim
L

7ag0a0
V
8
TL

(b, mPL(b, r))=˛
=0 for r [ rPc (b)
=r−rPc (b) for r > rPc (b).

(4.21)

Hence, similar to (4.19), one has

ẼP(b, r > rPc (b); h)=EP(b, 0; h) exp{− 12 |ĥ0 |
2 r̃P0 (b, r)}.

Moreover, the remarks (a)–(d) are valid for PBG. For r [ rPc (b) there
is a strong equivalence of ensembles expressed by:

ẼP(b, r; h)=EP(b, mP(b, r); h)=EPcan(b, r; h), (4.22)

cf. (3.47). Whereas for r > rPc (b), the functional E
P
can(b, r; h) and the non-

degenerate measure in (3.39), relating the canonical and the grand-canoni-
cal generating functionals, can be calculated explicitly. (23–25) This gives:

ẼP(b, r; h)=F
R
1
Kr, rPc (b)(dx) E

P
can(b, x; h). (4.23)

Here

EPcan(b, x > r
P
c (b); h)=exp{−

1
4 ||h||

2− 12 Ab, 0(h, h)} J0(`2(x−r
P
c (b)) |ĥ0 |),

(4.24)

and

Kr, rPc (b)(dx)=
˛0 for x [ rPc (b)

{r−rPc (b)}
−1 exp 3 −x−r

P
c (b)

r−rPc (b)
4 dx for x > rPc (b),

(4.25)
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is known as the Kac measure for r > rPc (b). Since by (a)–(c) the limiting
measure in (3.39) is degenerate:

Kr, rPc (b)(dx)=d(x−r) dx, (4.26)

for r [ rPc (b), cf. (4.22), the representation (4.23) is valid for any r \ 0.

5. CONCLUDING REMARKS

5.1. To answer the question about the rôle of the type III BE con-
densation in determining the generating functional (4.19), let us consider
instead of (1.1) a truncated model with the HamiltonianH0L.
Since Theorem 3.1 is valid for g+=0 (or c+=0), the generating func-

tional for the model H0L has for m < 0 the same form:

E0(b, m; h)=lim
L

D
k ¥ Lg

Oe
i

`2V
(hkak+hkagk )PH0L (b, m)

=J0(`2r
0
0(b, m) |ĥ0 |) exp{−

1
4 ||h||

2− 12 Ab, m(h, h)}, (5.1)

as for HIL, cf. (3.34). Here r
0
0(b, m)=r

I
0(b, m), see (1.7). Again, in this

domain we have the strong equivalence of ensembles (3.47):

Ẽ0(b, r; h)=E0(b, m0(b, r); h)=E0can(b, r; h), (5.2)

where m0(b, r)=mI(b, r) and r0c(b)=r
I
c(b), see (3.37).

On the other hand, for r > r0c(b) the model H
0
L manifests (instead of

the type III) the BE condensation of the type I, see ref. 8. More precisely,
for dilatation of a cubic L there is the BE condensation in 2d modes:

K2d — {k ¥ Lg : {kai }
d
i=1=(0, 0,..., 0, ka=±2p/V

1/d, 0,..., 0), a=1, 2,..., d},

such that

lim
L

1
V
ONk ¥K2d

PH0L (b, m
0
L(b, r > r

0
c(b)))=

1
2d
(r−r0c(b)), (5.3)

and

lim
L

1
V
ONk ¥ Lg

0{K2d 2 {0}}PH0L (b, m
0
L(b, r > r

0
c(b)))=0. (5.4)
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It corresponds to the asymptotics:

m0L(b, r > r
0
c(b))=eka −

2d
Vb(r−r0c(b))

+O 1 1
V
2 (5.5)

of the solution of the equation

r=
1
V

C
k ¥ Lg

ONkPH0L (b, m
0
L(b, r)). (5.6)

Since ek−m
0
L(b, r) > 0 for k ] 0, following the same line of reasoning as in

calculation of (4.2) we get for

E0L(b, m
0
L(b, r); h)=Oe

i

`2V
(h0a0+h0ag0 )PU0L (b, m

0
L(b, r))

× D
k ¥K2d

Oe
i

`2V
(hkak+hkagk )PTL (b, m

0
L(b, r))

× D
k ¥ Lg

0{K2d 2 {0}}
Oe

i

`2V
(hkak+hkagk )PTL (b, m

0
L(b, r)) (5.7)

the limit:

Ẽ0(b, r; h) — lim
L

E0L(b, m
0
L(b, r); h)

=J0(`2r
0
0(b, 0) |ĥ0 |) exp{−

1
4 ||h||

2− 12 Ab, 0(h, h)}

× exp{− 12 |ĥ0 |
2 (r−r0c(b))}, (5.8)

which coincides with the generating functional (4.18), or (4.19).

Theorem 5.1. The generating functionals for the models H0L and
HIL are identical:

Ẽ0(b, r; h)=ẼI(b, r; h), (5.9)

for any b and r.

5.2. Notice that the relation between grand-canonical and canonical
generating functionals (4.23) for the PBG can be seen by means of the
identity:

exp 1−1
2
lz22=F

+.

0

dt
l
e−t/lJ0(`2t |z|), (5.10)
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for l > 0. It yields the representation of the grand-canonical generating
functionals (4.19) (or (5.8)) via the Kac measure:

ẼI(b, r; h)=F
R
1
Kr, rIc (b)(dx) E

I(b, m=0; h) J0(`2(x−r
I
c(b)) |ĥ0 |). (5.11)

Following (4.23) and (4.24) this gives a temptation to identify

EI(b, m=0; h) J0(`2(r−r
I
c(b)) |ĥ0 |)=EIcan(b, r; h), (5.12)

for r > rIc(b), with the generating functional E
I
can(b, r; h) of the model H

I
L

(or H0L) in the canonical ensemble. But actually we know neither
EIcan(b, r; h), nor E

0
can(b, r; h), for r > r

I
c(b), so we are unable to check this

hypothesis.
For r [ rIc(b) the representation of the grand-canonical generating

functional via the degenerate Kac measure (4.26) and the canonical gener-
ating functional follows directly from (3.47), or (5.2).

5.3. In the present paper we are not concerned with the explicit form
of the CCR representations corresponding to the generating functional
ẼI(b, r; h) for different densities r. Therefore, we limit ourselves only by
few remarks:

– In domain r [ r(b, e0) one has:

ẼI(b, r < rIc(b); h)=exp{−
1
4 ||h||

2− 12 Ab, mI(b, r) < 0(h, h)}, (5.13)

where quadratic form 1
4 ||h||

2+12 Ab, mI(b, r)(h, h) is closable. It is known that in
this case the representation is a factor corresponding to the class of quasi-
free states, see refs. 30 and 27 for details.

– By virtue of (5.10) the ẼI(b, r; h) in domain r(b, e0) < r < r
I
c(b) is

the (inverse) Laplace transform of a generating functional with the non-
closable quadratic form 1

2 l |ĥ0 |
2+14 ||h||

2+12 Ab, mI(b, r)(h, h). Hence, the repre-
sentation is not a factor.

– Because of the term − 12 |ĥ0 |
2 r̃I0(b, r), see (4.19), the same remark is

valid for representation in domain r \ rIc(b). For details of construction of
the representation in these cases see ref. 24.

APPENDIX A

The aim of this appendix is to investigate the type III BE condensate
in the model (1.1), and to add some new results to what is known since. (8, 9)
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The essential point is to obtain the asymptotics of mIL(r), which is the
solution the of equation

r=rIL(b, m
I
L(b, r))=

1
V

C
k ¥ Lg

0{0}

ONkPHIL (b, m
I
L(b, r))

+7N0
V
8
HIL

(b, mIL(b, r)), (A.1)

see (3.35). We recall that by (1.7) one has

lim
L

7N0
V
8
HIL

(b, mIL(b, r))=r
I
0(h, m

I(b, r)),

where we put mI(b, r) — limL m
I
L(b, r). To simplify the arguments, we

consider below a cubic box L … Rd > 2 of the volume V=|L|=Ld, and (at
the very last moment) we put all constants {gk}k ¥ Lg to be equal to g > 0 .

A.1. Let D̃ (L)− and D̃
(L)
+ be two sets defined by

D̃ (L)− — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
V

[ 04

D̃ (L)+ — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
V
> 04 ,

(A.2)

cf. (4.3). Then (A.1) transforms into

r=
1
V

C
k ¥ D̃(L)−

ONkPHIL (b, m
I
L(b, r))+

1
V

C
k ¥ D̃(L)+

ONkPHIL (b, m
I
L(b, r))

+7N0
V
8
HIL

(b, mIL(b, r)). (A.3)

Notice that, since ek ] 0=O(V−2/d) for d > 2, the set D̃
(L)
− =”, if

mIL(b, r) [ 0 for large V.
It is natural to anticipate that, due to the repulsive interaction, the

occupation number of the mode k decreases in comparison to a perfect
Bose gas at a modified chemical potential. The following lemma provides a
bound of this type sufficiently good for our purposes for k ¥ D̃ (L)+ . the
bound is meaningless for k ¨ D̃ (L)+
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Lemma A.1 (Ref. 8). Let g+ \ gk \ g− > 0 for k ¥ Lg0{0}. Then
for any e0 ¥ R1 and k ¥ D̃ (L)+ , one has the estimate:

ONkPHIL [
1

eb(ek −m
I
L(b, r)−

gk
V )−1

, (A.4)

for V sufficiently large.

Proof. By the correlation inequalities for the Gibbs state wIL(−) —
O−PHIL (see refs. 31 and 32):

bwIL(X
g[HIL(m), X]) \ w

I
L(X

gX) ln
wIL(X

gX)
wIL(XX

g)
, (A.5)

where X is an observable from the domain of the commutator [HIL(m), .]
with HIL(m) —H

I
L−mNL, we can deduce

bwIL(a
g
k[H

I
L(m), ak]) \ w

I
L(Nk) ln

wIL(Nk)
wIL(Nk)+1

, (A.6)

for X=ak (k ] 0). Since for k ] 0,

[HIL(m), ak]=(m− ek) ak−
gk
V
agka

2
k,

from (A.6) one finds for m=mIL(r)

bwIL 11mIL(r)+
gk
V
− ek 2Nk−

gk
V
N2k 2 \ wIL(Nk) ln

wIL(Nk)
wIL(Nk)+1

,

which gives:

b 1 ek−mIL(r)−
gk
V
2 wIL(Nk) [ wIL(Nk) ln

wIL(Nk)+1
wIL(Nk)

. (A.7)

Now the rest of the proof is essentially due to solution for x \ 0 of the
inequality (A.7):

bk [ ln
x+1
x
, (A.8)

where

x — wIL(Nk), bk — b 1 ek−mIL(r)−
gk
V
2 . (A.9)
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Since for k ¥ D̃ (L)+ we have bk > 0, the inequality (A.8) implies (A.4) for
sufficiently large L. L

Remark A.2 (Ref. 8). Because of repulsive interaction gk \ g− > 0
for k ¥ Lg, see (1.2), the finite-volume pressure pIL(b, m) of the model (1.1)
is a convex function of m ¥ R1 such that limL p

I
L(b, m > 0)=+.. This

means that (in contrast to the PBG) for large r the solution mIL(r) of
Eq. (A.1) should be positive. By convexity:

pIL(b, m)−p
I
L(b, m=0)
m

[ “m p
I
L(b, m)=r

I
L(b, m) (A.10)

for m > 0, one gets that limLr
I
L(b, m > 0)=+.. Therefore, limLm

I
L(r) [ 0;

i.e., the positive solution of (A.1) must go to zero in the thermodynamic
limit.

Corollary A.3. For r > rIc(b) and V sufficiently large the solution
mIL(b, r > r

I
c(b)) > 0.

Proof. Suppose that mIL(b, r) [ 0 for any r and L. Then D̃
(L)
− =”;

i.e., D̃ (L)+ =L
g0{0}, and by Lemma A.1 one gets the estimate:

1
V

C
k ¥ Lg

0{0}

ONkPHIL (b, m
I
L(b, r))+7

N0
V
8
HIL

(b, mIL(b, r))

[
1
V

C
k ¥ Lg

0{0}

1

eb(ek −m
I
L(b, r)−

gk
V )−1

+7N0
V
8
HIL

(b, mIL(b, r)).

Then, by virtue of mIL(b, r) [ 0, we get the following inequalities in the
thermodynamic limit:

r=lim
L

1
V

C
k ¥ Lg

ONkPHIL (b, m
I
L(b, r))

[ lim
L
rPL(b, m

I
L(b, r))+lim

L

7N0
V
8
HIL

(b, mIL(b, r))

[ rPc (b)+r
I
0(b, m=0)=r

I
c(b), (A.11)

see (1.7)–(1.9). But this is impossible for r > rIc(b), that proves the asser-
tion. L

Therefore, Remark A.2 and Corollary 1.3 state that

lim
L
mIL(b, r > r

I
c(b))=0. (A.12)
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Corollary A.4. The representation (A.3), together with arguments of
Corollary A.3 and (A.12), allow to refine the localisation of the non-exten-
sive BE condensation (1.10):

r̃I0(b, r)=lim
L

1
V

C
k ¥ D̃(L)−

ONkPHIL (b, m
I
L(b, r))

=r− lim
L

1
V

C
k ¥ D̃(L)+

ONkPHIL (b, m
I
L(b, r))

− lim
L

7N0
V
8
HIL

(b, mIL(b, r))

=r−rIc(b). (A.13)

A.2. Our next step is to calculate the asymptotics of mIL(b, r > r
I
c(b))

in (A.12). To this end suppose that for VQ+. it has the form:

mIL(b, r > r
I
c(b))=

B
Vc
+o(V−c), (A.14)

with c > 0 and B > 0 that should be defined from Eq. (A.1).

Remark A.5. Suppose that c > 2/d. Since ek ] 0=O(V−2/d) , then the
set D̃ (L)− =”, for large V. Therefore, the same line of reasoning as in
Corollary A.3 produces a contradiction to our main assumption:
r > rIc(b). Hence, we must have:

c [ 2/d. (A.15)

By virtue of additive structure of the Hamiltonian (3.2), for any k ¥ Lg

we get that

7Nk
V
8
HIL

(b, mIL(b, r))=7
Nk
V
8
HIk

(b, mIL(b, r))=
1
V

C
+.

n=0
n nL, k(b, r; n),

(A.16)

with probability measures: {nL, k(b, r; n)}L … R
d, k ¥ Lg:

nL, k(b, r; n) —
e−b[(ek −m

I
L(b, r)−

gk
2V) n+

gk
2V n

2]

;+.
n=0 e

−b[(ek −m
I
L(b, r)−

gk
2V) n+

gk
2V n

2]
. (A.17)
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From (A.17) it is clear that we have to distinguish two domains:

D (L)− — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
2V
< 04 ,

D (L)+ — 3k ¥ Lg0{0} : ek−m
I
L(b, r)−

gk
2V

\ 04 ,
(A.18)

cf. (4.3) and (A.2). Since D (L)− … D̃ (L)− , our next statement makes the locali-
sation of the non-extensive BE condensation more precise, cf. (A.13).

Lemma A.6. For r > rIc(b) one has:

r̃I0(b, r)=lim
L

1
V

C
k ¥ D(L)−

ONkPHIL (b, m
I
L(b, r))=r−r

I
c(b) > 0. (A.19)

Proof. By (A.13) it is sufficient to prove that

lim
L

1
V

C
k ¥ D̃(L)− 0D(L)−

ONkPHIL (b, m
I
L(b, r))=0. (A.20)

Since 0 < g− [ gk [ g+, by (A.16) and (A.17) we get that

ONkPHIL (b, m
I
L(b, r)) [

;+.n=0 ne−bgkn
2/2V

;+.n=0 e−bgkn
2/2V

;+.n=0 e−bgkn
2/2V

;+.n=0 e−b(gkn/2V+gkn
2/2V)

[ O(V1/2)

(A.21)

for k ¥ D̃ (L)− 0D (L)− and large V. On the other hand, the set D̃
(L)
− 0D (L)− has

the same number of elements as the set

3 s — {sa}da=1 ¥ Zd0{0} :
g−
2V
+mIL(b, r) [

(
2

2m
(2p)2

V2/d
C
d

a=1
s2a [

g+
V
+mIL(b, r)4 .

(A.22)

Since the volume of the elementary cell of the dual lattice Lg is equal to
(2p)d/V, the number of points (A.22) for large V is finite. Together with
the estimate (A.21) this gives (A.20). L

Theorem A.7. Let gk=g> 0. If r > r
I
c(b), then asymptotics of the

chemical potential mIL(b, r) has the form (A.14) with

c=2/(d+2) and B(b, r)=1r−r
I
c(b)
C
22/(d+2). (A.23)

Equilibrium States for Model with Two Kinds of Bose Condensation 173



Here C=(2m/(2)d/2/[g 2d−2pd/2d(d+2) C(d/2)] > 0, and C(z) is the
Euler gamma function.

Proof. One has to tune the values of B > 0 and c > 0 in such a way
that to satisfy Eq. (A.19) for VQ+.. Since we have c [ 2/d
(Remark A.5), by using (A.16) and (A.17) we get:

lim
L

1
V

C
k ¥ D(L)−

ONkPHIL (b, m
I
L(b, r))

=lim
L

1
V

C
{s ¥ Z

d
0{0} : (

2

2m
(2p)2

V2/d
S
d
a=1s

2
a [ g/2V+B/V

c}

C
+.

n=0
nnL, k=2ps/V1/d(b, r; n)

=lim
L

1
V

C
s ¥SB

C
+.

n=0
nnL, k=2ps/V1/d− c/2 1V1−2cb, r;

n
V1− c
2

=lim
L

3V1− c
Vdc/2
4 1
V1−dc/2

C
s ¥SB

C
+.

n=0

n
V1− c

nL, k=2ps/V1/d− c/2 1V1−2cb, r;
n
V1− c
2 ,

(A.24)

where SB — {s={sa}
d
a=1 ¥ Zd0{0} : (

2

2m (2p)
2; a=1 d(sa/V1/d− c/2)2 [ B}, see

(4.14).
The sum in (A.24) over SB is nothing but the Darboux–Riemann sum

converging to the integral, when VQ+.. Therefore, to get a nontrivial
limit in (A.24) we must choose the value of c from the condition:
1− c=dc/2; i.e., c=2/(d+2) in (A.14). For this value of c and d > 2 one
has 1−2c > 0. Then the family of the scaled probability measures:

{nL, k=2ps/V1/d− c/2(V1−2cb, r; n/V1− c)}L … R
d, s ¥SB

,

cf. (A.17), verifies the Laplace large deviation principle. (28, 29) Hence, by a
diagonal limit involving in (A.24) the sequence of Darboux–Riemann sums
and probability measures, and by (A.19), we deduce the equation:

r−rIc(b)=
1
(2p)d

F
{k: ek [ B}

ddk
B− ek
gk

={(2m/(2)d/2/[g 2d−2pd/2d(d+2) C(d/2)]} B (d+2)/2, (A.25)

which defines the value of B=B(b, r). This finishes the proof of
(A.23). L
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